本文作者:访客

摩尔线程自主GPU成功适配!OpenCV-MUSA正式开源:轻松替代CUDA

访客 2024-09-20 19:04:27 193267 抢沙发
摩尔线程自主GPU成功适配!OpenCV-MUSA正式开源:轻松替代CUDA摘要: 9月20日消息,摩尔线程官方宣布,其自研统一系统架构MUSA已完成与开源计算机视觉库OpenCV的适配,并正式发布OpenCV-MUSA开源项目。该项目可以为开发者、研究人员提供...

9月20日消息,摩尔线程官方宣布,其自研统一系统架构MUSA已完成与开源计算机视觉库OpenCV的适配,并正式发布OpenCV-MUSA开源项目。

该项目可以为开发者、研究人员提供更高效、更便捷的工具,开发基于摩尔线程GPU的各类计算机视觉应用时,可大幅提升效率,加速国产创新。

OpenCV是计算机视觉领域最重要的开源库之一,具备丰富的功能和高效的性能,为图像和视频处理的开发者、研究人员提供了强大而灵活的工具,在自动驾驶、医疗影像、安防监控、机器人视觉、增强现实、图像识别等领域都得到了广泛的应用。

OpenCV也为GPU加速提供了支持,通过引入OpenCL、CUDA等加速后端,极大地提升图像视频处理、线性代数计算等复杂任务的执行速度,满足更大规模数据处理、更复杂算法的计算需求,为实时应用、深度学习、三维重建和高分辨率视频处理等领域提供卓越的性能和效率。

摩尔线程通过自主研发的MUSA统一系统架构和软件平台,致力于构建一个完善且易用的国产GPU应用生态。

此次发布的OpenCV-MUSA开源项目,目的就在于将OpenCV的强大功能、MUSA架构的高性能计算能力相结合,充分发挥摩尔线程全功能GPU的强大算力。

在现有OpenCV代码的基础上,摩尔线程新增了MUSA设备后端,并为多个算法模块提供了MUSA加速支持,并对编译脚本也进行适配。

目前,OpenCV-MUSA已支持包括core、mudev、musaarithm、musawarping、musafeatures2d、musafilters、musaimgproc、musaobjdetect、musastereo、musabgsegm、photo、stitching、superres、videostab、xfeatures2d在内的多个模块。

OpenCV-MUSA支持绝大部分cv::cuda命名空间下的数据结构及API,尤其是OpenCV中为GPU设计的核心图像数据结构GpuMat。

开发者只需将现有C++代码中的命名空间cv::cuda替换为cv::musa,即可在摩尔线程GPU上实现相同的功能。

OpenCV-MUSA开源地址:

https://github.com/MooreThreads/opencv

https://github.com/MooreThreads/opencv_contrib

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏

阅读
分享

发表评论

快捷回复:

评论列表 (暂无评论,193267人围观)参与讨论

还没有评论,来说两句吧...